

Interval Trees

Marco Gallotta

Problem

● Given a collection of items i, each with
value V

i

● Want to answer many queries of the form:
How many items are in the interval [x, y]?

Binary Tree

● At each node V
i
, store the count o of

interval [0, V
i
]

● Problem: unbalanced trees:

1

2

3

4

1
3

0
1

3
6

2
4

Radix Tree

● Root node contains the interval [0, max]
● A node containing the interval [A, B] has

children with interval [A, (A+B)/2] and
[(A+B)/2 + 1, B]

● Each node holds the count over its range
● Every number has a well-defined position

Radix Tree: Example

[0, 3]
6

[0, 1]
3

[2, 3]
3

[0, 0]
1

[1, 1]
2

[2, 2]
1

[3, 3]
2

Radix Tree: Update

● To insert the value V
i
:

– Increment the root node's count

– If V
i
 <= (A+B)/2

● Insert V
i
 into the left child

– Else
● Insert V

i
 into the right child

● Similar process for deletion

Radix Tree: Query

● To find the number of items in the interval
[x, y]:
– If [A, B] covers [x, y]

● return root node's count

– Let sum = 0
– If [A, (A+B)/2] overlaps [x, y]

● sum += count in left child over [x, y]

– If [(A+B)/2 + 1, B] overlaps [x, y]
● sum += count in right child over [x, y]

– Return sum

Binary Indexed Trees

● Any number can be represented as the
sum of powers of two

● Assume intervals are of the form [1, x]
● An interval count can be represented in a

similar manner
● [1, 13] = [1, 8] + [9, 12] + [13, 13]
● So we only store counts of interval of the

form [x – 2r + 1, x]

Binary Indexed Trees: Example

Binary Indexed Trees

● 13 = 1101
2

● c[1101] = tree[1101] + tree[1100] +
tree[1000]

● To isolate last 1 in binary form: n & -n
– Proof in reference article

Binary Indexed Trees: Update

void update(int idx ,int val){

while (idx <= MaxVal){

tree[idx] += val;

idx += (idx & -idx);

}

}

Binary Indexed Trees: Query

int read(int idx){

int sum = 0;

while (idx > 0){

sum += tree[idx];

idx -= (idx & -idx);

}

return sum;

}

Sample Problem:
TopCoder SRM 310

● n cards face down on table
– T i j: turn cards from index i to index j, include

i-th and j-th card
– Q i: is the i-th card face?)

Sample Problem:
Solution

● Array f (of length n + 1) holds our BIT
● f[i]++ and f[j + 1]--
● For each card k between i and j, sum f[1]

+ f[2] + ... + f[k] will be incremented
● For each query, the answer is f[i] % 2

Analysis

● Binary Tree: common, but balancing can
be difficult and expensive

● Radix Tree: guaranteed O(logN) for
update and query

● Binary Index Tree: Same as Radix Tree,
but very short code

Questions

?

References

● http://www.topcoder.com/tc?module=Stat
ic&d1=tutorials&d2=binaryIndexedTrees

